
PROYECTO FIN DE MÁSTER

T́ıtulo: Desarrollo de un Sistema de Análisis de Grafos de Influencia

Social para Big Social Data

T́ıtulo (inglés): Development of a Social Influence Graph Analytics System

for Big Social Data

Autor: Pablo Álvarez Garćıa

Tutor: Juan Fernando Sánchez Rada

Ponente: Carlos Ángel Iglesias Fernández

Departamento: Ingenieŕıa de Sistemas Telemáticos

MIEMBROS DEL TRIBUNAL CALIFICADOR

Presidente: Tomás Robles Valladares

Vocal: Mercedes Garijo Ayestarán

Secretario: Joaqúın Salvachua Rodŕıguez

Suplente: Francisco González Vidal

FECHA DE LECTURA:

CALIFICACIÓN:

UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE
INGENIEROS DE TELECOMUNICACIÓN

Departamento de Ingenieŕıa de Sistemas Telemáticos
Grupo de Sistemas Inteligentes

PROYECTO FIN DE MÁSTER

DEVELOPMENT OF A SOCIAL

INFLUENCE GRAPH ANALYTICS SYSTEM

FOR BIG SOCIAL DATA

Pablo Álvarez Garćıa

Junio de 2016

Resumen

El objetivo de este proyecto es doble: 1) caracterizar el contexto social, 2) crear una

plataforma para obtener y analizar el contexto social, es decir, el contexto de los usuar-

ios y su contenido en las redes sociales. En particular, nuestro objetivo es detectar au-

tomáticamente posibles influenciadores y evaluar sus capacidades de impacto y relevancia

en un tema determinado.

Los principales componentes de la plataforma son los algoritmos que permiten analizar el

contexto social. Este trabajo proporciona una visión general del estado del arte en este tipo

de algoritmos, aśı como una descripción de los algoritmos implementados. La plataforma

también proporciona una interfaz para cargar los usuarios y tweets objetivo en el sistema.

Además, se ha implementado una interfaz web a través de la cual los usuarios pueden

acceder a los resultados del análisis. p.ej. para estudiar la influencia de usuarios o contenidos

espećıficos, aśı como la evolución de la influencia en el tiempo.

Por último, se presentan las conclusiones extráıdas de este trabajo, las posibles ĺıneas

de trabajo futuro y continuación del proyecto y los pasos a seguir en términos de desarrollo

y el uso de la plataforma.

Palabras clave: Big Data, Social Data, Contexto Social, OrientDB, Influencia Social,

Twitter, Python

V

Abstract

The aim of this project is twofold: 1) to characterize social context, 2) to create a platform

to collect and analyse social context, i.e. context of users and content in social media. In

particular, we aim to automatically detect possible influencers and assess their relevance

and impact capabilities in a given topic.

The main aspects of the platform are the algorithms to analyse the social context. This

work provides an overview of the state of the art in such algorithms, as well as a description

of the algorithms implemented. The platform also provides an interface to load target users

and tweets into the system.

Additionally, we have implemented a web interface through which users can access the

results of the analysis. e.g. to study the influence of specific users or content, as well as the

evolution of influence over time.

Finally, we present the conclusions drawn from work, the possible lines of continuation

of the project and the next steps in terms of development and use of the platform.

Keywords: Big Data, Social Data, Social Context, OrientDB, Social Influence, Twitter,

Python

VII

Contents

Resumen V

Abstract VII

Contents IX

List of Figures XIII

List of Tables XV

1 Introduction 1

1.1 Context . 3

1.2 Goals . 3

1.3 Structure . 4

2 Social Network Analysis 7

2.1 Introduction . 9

2.2 Social Media Data . 9

2.3 Social Network Analysis . 10

2.3.1 Basics of Network Structure . 10

2.3.1.1 Network Structures . 11

2.3.1.2 Links, paths and connectedness 12

2.3.2 Social Network Concepts . 13

2.3.2.1 Transactional content . 13

IX

2.3.2.2 Nature of the links . 14

2.3.2.3 Structural characteristics 14

2.4 Twitter . 15

3 Characterizing Social Context 17

3.1 Overview . 19

3.2 User . 19

3.2.1 Profile . 19

3.2.2 Behaviour . 20

3.2.3 Network . 21

3.3 Content: Tweets . 22

3.3.1 Attributes . 22

3.3.2 Propagation . 23

3.3.3 Network . 24

3.4 User and Tweet Influence . 24

3.4.1 Social Authority . 25

3.4.2 Follower Wonk . 25

3.4.3 Klout Score . 25

3.4.4 PeerIndex . 26

3.4.5 Twitter Rank Algorithm . 27

3.4.5.1 User relevance . 27

3.4.6 Tweet relevance . 31

4 Requirements Analysis 35

4.1 Overview . 37

4.2 Use Cases . 37

4.2.1 UC1: Brand Monitoring . 37

4.2.2 UC2: Emotion Analysis . 37

4.2.3 UC3: Targeting . 38

4.2.4 UC4: Task Monitoring . 39

4.2.5 UC5: Spread of Content . 40

4.3 Database requirements . 40

4.4 Summary of requirements . 41

4.4.1 Functional requirements . 42

4.4.2 Non-functional requirements . 42

5 Enabling Technologies 45

5.1 Python . 47

5.2 Docker . 47

5.3 Database . 48

5.3.1 Relational Databases . 48

5.3.2 Document-oriented databases . 49

5.3.3 Graph-oriented databases . 50

5.3.4 Hybrid databases . 52

5.3.5 Comparison . 52

5.4 Web framework: Flask . 54

5.5 Swagger . 54

5.6 Celery . 54

5.7 Redis . 55

6 Architecture 57

6.1 Overview . 59

6.2 Graph Database . 60

6.3 Processing module . 61

6.3.1 Metrics and Analysis . 61

6.3.2 Static Analysis . 62

6.3.3 Temporal Analysis . 62

6.4 Web Server . 62

6.5 API . 63

6.6 Task manager . 66

7 Implementation 67

7.1 Overview . 69

7.2 Graph Database . 69

7.3 Database modeling . 69

7.4 Web Server and API . 71

7.5 Docker . 72

7.6 Task Manager . 73

8 Conclusions and future work 75

8.1 Conclusions . 77

8.1.1 Goals . 77

8.1.2 Challenges . 78

8.2 Future Work . 79

A Docker Installation and Deployment 81

A.1 Installation of Docker . 81

A.2 Deploying SCANER . 83

Bibliography 84

List of Figures

4.1 UC1: Brand Monitoring . 38

4.2 UC2: Emotion Analysis . 38

4.3 UC3: Targeting . 39

4.4 UC4: Task Monitoring . 39

4.5 UC5: Spread of Content . 40

5.1 SQL Relationship Model . 49

5.2 Graph-oriented Database Relationship Model 51

6.1 General Architecture . 60

6.2 Flux Diagram . 61

7.1 DB model . 71

XIII

List of Tables

5.1 DB comparative . 53

6.1 API Calls . 65

XV

CHAPTER1
Introduction

This chapter provides an introduction to the problem which will be approached in

this project. It provides an overview of the objectives and goals of the project and a

summary of the structure of the document.

1

CHAPTER 1. INTRODUCTION

2

1.1. CONTEXT

1.1 Context

In recent years, social networks have experienced exponential growth in both number of

users and market relevance. Social networks concentrate large amounts of users that ar

willing to exchange personal information in order to access the services of the social media

site. Large amounts of data are waiting in social networks to be exploited by companies.

Because of this, companies have found in them a source of information about their products

and a very powerful marketing platform. The main objectives of these companies are the

users known as ”influencers”; users who have credibility on a particular topic, and their

presence and influence in social networks can become an interesting prescriptor for a brand.

Through them, companies can track public opinion about your products or your reputation

and get good publicity from users with great influence.

The problem is that exploiting these benefits is not a simple task. Companies need

to analyse social network in order to find the most influential users or the most relevant

content. SNA (Social Network Analysis) comes to answer that need. SNA is a technique

of quantitative research for social networks, based on the pillars of graph theory. SNA

employs the use of representations of networks of actors, to understand social phenomena.

Compared to other analysis techniques, SNA has a strong relational character, and focuses

on understanding the interactions between actors in a network and the structure of the

network itself. In social networking environments, relationships are even more important

than the content itself, as increased connectivity means greater diffusion capacity.

1.2 Goals

This project aims to create a modular platform to collect and analyse data from social

networks to automatically detect possible ”influencers” and assess their capacity of impact

and their relevance in the topic being analysed. To achieve this, the main goals of our

project are:

• To define and characterize the concept of Social Context.

• To create a platform that:

– Is able to extract and process social media information.

– Is able to characterize users and content in order to be able to use this data in

other applications.

3

CHAPTER 1. INTRODUCTION

– Is modular and extensible.

– Is capable of retrieving, storing and processing large amounts of information.

– Has an interface that allows users to interact with it.

1.3 Structure

In this section we will provide a brief overview of all the chapters of this Master Thesis. It

has been structured as follows:

Chapter 1 provides an introduction to the problem which will be approached in this

project. It provides an overview of the objectives and goals of the project and a summary

of the structure of the document.

Chapter 2 introduces and defines the concept of Social Network Analysis. In this chapter

we will explain the state of the art in Social Network Analysis (SNA) and different concepts

associated with social networks.

Chapter 3 will define and characterize the concept of Social Context, presenting the most

relevant metrics for users and contents. First, we will explain the different components of

the Social Context and the metrics associated, particularized for Twitter. Second, we will

explain how the influence, one of the most complex metrics, can be obtained. And last, we

will present the algorithm that we have implemented to obtain it in this project.

Chapter 4 introduces the requirements analysis for the project. It is important to

perform a requirements analysis to make sure the final solution will be adequate for real life

applications, and to broaden the variables taken into consideration, making it less likely to

miss a key aspect in the design process.

Chapter 5 introduces which technologies have made this project possible. First of all

the programming language. Second of all, the technology that allows to virtualize the

components and deploy it with a stable configuration. Third, the storage support for the

system, where all the social media data and results of the process will be stored. Finally,

the technologies that have been used to develop the web interfaces that enable the RESTful

API and the interaction with the users.

Chapter 6 describes the architecture of the system. We will explain how the different

modules are structured, their roles and how they communicate between them. Finally, we

will explain how the user can access the platform to load data or retrieve information.

Chapter 7 describes how the different modules of the system have been implemented

4

1.3. STRUCTURE

and which technologies have been used.

Chapter 8 will present the conclusions obtained from this project and the lines of future

work and improvement.

Finally, the appendix provide useful related information, especially covering the instal-

lation and configuration of the tools used in this thesis.

5

CHAPTER 1. INTRODUCTION

6

CHAPTER2
Social Network Analysis

This chapter introduces and defines the concept of Social Network Analysis. In this

chapter we will explain the state of the art in Social Network Analysis (SNA) and the

different concepts associated with social networks.

7

CHAPTER 2. SOCIAL NETWORK ANALYSIS

8

2.1. INTRODUCTION

2.1 Introduction

We can define Social Context as the set of characteristics of social networks linked to an act

of communication, content or user. One of the main parts of our work was to characterize

this social context, define it and analyse its components. In order to understand social

context, some concepts about social media and social networks are needed.

2.2 Social Media Data

One of the definitions of social media [1] is: “Social Media is the use of electronic and

Internet tools for the purpose of sharing and discussing information and experiences with

other human beings in more efficient ways.”

Traditional media, such as newspapers, television and radio, follow a unidirectional

delivery paradigm, from business to consumer. The information is produced from media

sources or advertisers and transmitted to media consumers. Different from this traditional

way, web technologies are more like consumer to consumer services. They allow users to

interact and collaborate with each other in a social media dialogue of user-generated content

in a virtual community.

Social media such as blogs, microblogs, discussion forums and multimedia sharing site

are increasingly used for users to communicate breaking news, participate in events and

connect to each other any time, from anywhere. The social media sites play a very important

role in current web applications, because they provide rich information of human interaction

and collective behaviour, thus attracting much attention from disciplines including sociology,

business, psychology, politics, computer science, economy, etc. [2].

Among the various formats of data exchanged in social media, text plays an important

role. The information in most social media sites is stored and shared in text format. For

example, microblogging services allow users to post small amounts of text for communicating

breaking news, information sharing, and participating in events. This emerging media is

the example of how social media has become a powerful communication channel.

This data contains valuable information for different uses. For example, companies

which want to know more about their customers or users, can extract data from social

media in order to create targeted marketing. This use of the data can bring benefits to the

company, but analysing it and extracting useful information from social media is not an

easy task. There are many approaches in this matter, with different tools and techniques,

9

CHAPTER 2. SOCIAL NETWORK ANALYSIS

and all of them are grouped under the name of Social Network Analysis (SNA).

2.3 Social Network Analysis

Social network analysis, sometimes also referred to as ”structural analysis” [3], is not a

formal theory, but rather a broad set of tools, techniques and strategies for investigating

social structures. Network studies is a topic that has gained increasing importance in recent

years [4], and the fact that the Internet is one largest networks is not unrelated to this. Social

network theory directly influences the way researchers nowadays think and formulate ideas

on the Web and other network structures, such as those shown in enterprise interactions.

Even within the field of sociology, network studies are becoming increasingly important.

The traditional individualistic social theory and data analysis considers individual actors

making choices without taking the behaviour of others into consideration. This individualis-

tic approach ignores the social context of the actor. One could say that properties of actors

are the prime concern here [5]. In SNA, however, the relationships between actors become

the first priority, and individual properties are only secondary. Relational data are the focus

of the investigations. It should be pointed out, however, that individual characteristics as

well as relational links are necessary in order to fully understand social phenomena.

Another important aspect of SNA is the study of how structural regularities influence

actors’ behaviour [6]. It is clear that ideas originating in SNA can offer added value to

investigations in many disciplines, in particular those mentioned previously. One distin-

guishes two main forms of SNA: the ego network analysis, and the global network analysis.

In ”ego” studies the network of one person is analysed. In global network analyses one tries

to find all relations between the participants in the network. SNA, although considered

here mainly within the field of sociology, is an interdisciplinary technique developed under

many influences, the most important ones coming from mathematics and computer science.

To understand the different concepts and functioning of SNA, it is necessary to explain

some basic concepts of network structures. In subsection 2.3.2 we will explain some specific

concepts associated with networks, and later we will particularize for social networks.

2.3.1 Basics of Network Structure

A network or graph is a set of nodes and edges. The nodes represent elements or individuals

in the network, with their properties, and edges represent the relationships between them.

Edges can also have their own properties.

10

2.3. SOCIAL NETWORK ANALYSIS

There are two main types of graphs, depending on the direction of their edges: directed

and undirected. Directed graphs are graphs where the edges have a direction associated

with them. An undirected graph is a graph in which edges have no orientation. Most social

networks are directed graphs.

2.3.1.1 Network Structures

Beyond nodes and edges, there are some basic structures that are important to know for

describing and understanding networks [6]. These include descriptions of nodes, their con-

nections, and their role in the network.

Subnetworks

So far, we have considered the entire graph or network, looking at how many nodes

and edges it has and how to describe them. Often, there are parts of the network that

are interesting as well. When we are considering a subset of the nodes and edges in

a graph, it is called a subnetwork. Some of the simplest subnetworks are singletons.

These are nodes that have no edges. While these nodes are not very “social”, they are

still part of a social network. In fact, it is very common to find singletons in online

social networks. Often, these represent people who signed up for an account to access

some part of the site other than the social networking features, or people who signed

up but never actively participated. We also are interested in small groups of nodes.

When looking at two nodes and their relationship, it is called a dyad, and a group of

three nodes is called a triad.

Cliques

Groups of nodes of any size have properties that are interesting. One of particular

interest is whether or not all nodes in a group are connected to one another. When

this happens, it is called a clique. The term is the same as the one we use to refer to,

for example, a group of people who are all strongly connected and tend to talk mostly

to one another (e.g., “Alice is part of a clique at school”). For a graph or subgraph

to be a clique, every node must be connected to every other.

Clusters

We are also interested in clusters of nodes. While there is no strict definition of a

cluster like there is for a clique, we can describe properties of clusters using some

network measures, like density. There are a variety of methods to automatically

identify clusters based on the network structure.

11

CHAPTER 2. SOCIAL NETWORK ANALYSIS

Egocentric Networks

One of the most important types of subgraphs we will consider is the egocentric

network. This is a network we pull out by selecting a node and all of its connections

until some degree or depth. Often, the central node and its edges are excluded and

only the node’s neighbours and their connections are considered. This helps make

the graph more readable. Egocentric networks can extend out further. Egocentric

networks are used to understand nodes and their role in the network.

2.3.1.2 Links, paths and connectedness

A link is a connection between different nodes in the network. This connections and mea-

sures of their closeness are important network characteristics that we will explain in this

section.

Paths

A path is a series of nodes that can be traversed following edges between them.

Often, we are only interested in the shortest path from one node to another. Note

that there may be multiple shortest paths between two nodes. Shortest paths will

be an important measure we consider in network analysis and are sometimes called

geodesic distances.

Connectedness

Paths are used to determine a graph property called connectedness. Two nodes in

a graph are called connected if there is a path between them in the network. There

does not need to be a direct edge, though that would count. Any path through a

series of nodes will work. An entire graph is called connected if all pairs of nodes

are connected. In an undirected graph, this is relatively straightforward. A path is

found by following edges between nodes. In a directed graph, edges may only go in

one direction. Thus, while there may be a set of edges that connect two nodes, those

edges may not all point in the right direction. If there are edges that can be followed in

the correct direction to find a path between every pair of nodes, the directed graph is

called strongly connected. If a path cannot be found between all pairs of nodes using

the direction of the edges, but paths can be found if the nodes, edges, and network

measures directed edges are treated as undirected, then the graph is called weakly

connected. If a graph is not connected, it may have subgraphs that are connected.

These are called connected components.

12

2.3. SOCIAL NETWORK ANALYSIS

Bridges and hubs

There are two basic concepts that we can use to identify particularly important edges

and nodes. The first is a bridge. Intuitively, a bridge is an edge that connects two

otherwise separate groups of nodes in the network. Formally, a bridge is an edge that,

if removed, will increase the number of connected components in a graph. Hubs are

important nodes rather than edges. They do not have a definition as strict as that of

a bridge, but the term is used to refer to the most connected nodes in the network.

2.3.2 Social Network Concepts

The term social network has entered common language and is understood to describe circles

of friends, acquaintances, colleagues, and so on. We are going to define social network as

any graph whose nodes are people and the edges are some kind of relationship between

individuals, e.g. a network of cellphone users and their calls. According to Tichy, Noel M.

et al. [7], there are three sets of properties of networks are of particular interest:

• Transactional Content: what is exchanged by the social objects. For instance, two

employees may exchange information or affect.

• Nature of the Links: this property refers to the strength and qualitative nature of the

relation between two social objects.

• Structural Characteristics: this property refers to the overall pattern of relationships

between the system’s actors. For instance, clustering, network density, and the exis-

tence of special nodes in the network are all structural characteristics.

2.3.2.1 Transactional content

What is exchanged when two actors are linked. Four types of transactional contents can

be distinguished: (1) exchange of affect (liking, friendship), (2) exchange of influence or

power, (3) exchange of information, and (4) exchange of goods or services. Social networks

can, then, be developed for each content type. These networks may or may not overlap and

an individual’s position in the networks may vary. For example, the information exchange

network might be decentralized and fully connected, while the influence network might be

centralized, with interactions mediated by the formal supervisor

13

CHAPTER 2. SOCIAL NETWORK ANALYSIS

2.3.2.2 Nature of the links

The linkages between pairs of individuals, explained in 2.3.1.2, can be described in terms

of several characteristics:

• Intensity: the strength of the relation as indicated by the degree to which individuals

honor obligations or forego personal costs to carry out obligations, or by the number

of contacts in a unit of time.

• Reciprocity: the degree to which individuals report the same (or similar) intensities

with each other for a content area.

• Clarity of expectations: the degree to which individuals agree about appropriate be-

havior in their relations to one another.

• Multiplexity: individuals have multiple roles, such as worker, husband, community

member, and group member. Multiplexity identifies the degree to which a pair is

linked by multiple roles. The more role requirements linking one person to another,

the stronger the linkage.

2.3.2.3 Structural characteristics

Structural characteristics can be divided into four levels:

• External network: in what ways is the focal unit linked with external domains? Given

some external linkage, in what ways is the set of actors linked?

• Total internal network: given a set of actors that make up the network, in what ways

are they linked.

• Clusters within the network: areas of the network where actors are more closely linked

to each other than they are to the rest of the network are termed clusters. There are

various types of clusters: formally prescribed work groups, emergent coalitions, and

cliques. A coalition is a temporary alliance of actors who come together for a limited

purpose . Cliques are more permanent informal associations and exist for a broader

range of purposes. For exampl:, task, social, and career.

• Individuals as special nodes within the network: not all individuals are equally im-

portant in social networks. Key nodes exist to link a focal unit to other areas within

the organization (liaison), as well as to areas outside the organization (gatekeepers).

Individuals can also be uncoupled from the rest of the network (isolates).

14

2.4. TWITTER

2.4 Twitter

Twitter launched as a micro-blogging website in March 2006 which allows users to post

status updates of up to 140 characters, also known popularly as tweets [8]. Since its launch,

Twitter has amassed a large user base and now has over 310 million users (May, 2016).

Twitter allows its users to post short status messages called tweets. Tweets can be posted

(tweeted) from various sources which include the Twitter website, Twitter mobile applica-

tions as well as several third party applications/websites (after authentication). Users also

have the control over the privacy features and they can choose to either make their tweets

public which make the tweets visible to any one or make them private which restricts the

access to only some users who obtain permission from the user. Users can follow other users

on twitter which gives them access to their tweets on their homepage on Twitter.

Twitter allows several other features. It allows users to reply to tweets of other users

by clicking on the reply button on the tweet of the user who one wants to reply to. This

is a way to say something back in response to a user’s tweet. In addition to this, users

can also mention other users in their tweets by adding ‘@’ to the username of another user

in a tweet. A mention is a way to refer to some other user. Another popular concept of

Twitter is retweeting. A retweet is an event of sharing someone else’s tweet to our followers.

Retweet plays an important part in the dissemination of information on twitter. Users can

also add a hashtag in their tweets by adding a ‘#’ sign before relevant keywords. This is

used to categorize those tweets to show more easily in twitter search. Very popular hash

tags on Twitter become trending topics on Twitter.

An important feature of Twitter that separates it from other social networking sites

like Facebook is that the relationship of following and being followed are not necessarily

bidirectional. Following someone is equivalent to subscribing to a blog; the follower gets all

the status updates of the user that he follows.

One key characteristic that emerges from the network of Twitter users is the Social

Graph. A social graph is a graph derived from the connections between the users. These

connections can be of many forms. The most straightforward social graph that can be

created from twitter is a graph that contains following and being followed relationship

among users. There have been several researches [9] [10] [11] focused towards studying

these social graphs and finding some features from such graphs. There are a few properties

common to many social graphs: the small-world property, power law degree distributions

and network transitivity (two users who have a common neighbour are more likely to be

connected together rather than with some other user who with whom they don’t share a

15

CHAPTER 2. SOCIAL NETWORK ANALYSIS

neighbour).

The social graphs generally contain a clustered structure meaning that certain users

form a tightly knit group with very low connectivity between different such groups [8].

These clusters may also contain other similarity features like similar tweets or locations etc.

A community in a social graph can be described as a group of vertices that have more edges

between them than any other vertex that belongs to other group in the social graph.

16

CHAPTER3
Characterizing Social Context

This chapter will define and characterize the concept of Social Context, presenting

the most relevant metrics for users and contents. First, we will explain the differ-

ent components of the Social Context and the metrics associated, particularized for

Twitter. Second, we will explain how the influence, one of the most complex metrics,

can be obtained. And last, we will present the algorithm that we have implemented to

obtained it in this project.

17

CHAPTER 3. CHARACTERIZING SOCIAL CONTEXT

18

3.1. OVERVIEW

3.1 Overview

In this chapter, we will focus in characterizing social context, explaining its main compo-

nents, their characteristics and their relationships.

We will use Twitter as the reference social network. All these concepts can be extrapo-

lated to any other microblogging network, and other social media like Facebook, although

some restrictions apply. However, other examples tend to suffer of lack of widespread adop-

tion or of a more restrictive interfaces and policies.

There are two main components in social context: users and content. The following sub-

sections present a series of features of both users and content, which we analyse separately.

Note that, technically, any information from the social network that is not present in the

bare textual content could be considered part of its social context. However, these metrics

tend to include richer aspects from the social network, exploiting the graph of relationships

and interactions between users and content. Some of these aspects, the more general ones,

are already provided by the social network site through its API, such as the number of

mentions, favourites or replies. More specific or intensive metrics need to be computed by

third parties. This approach is more flexible and powerful, but is obviously limited by the

request rate and access restrictions imposed by the social network site.

3.2 User

A user is any entity capable of interacting with other entities in a social network. User

information can be split in three groups: profile information, behaviour indicators and

information about the user network.

3.2.1 Profile

This group includes all the parameters related with the user’s profile. Obtaining these

metrics is generally a simple process and can be obtained directly from the profile. The

metrics of this group tend to be static or vary slightly in time. The most relevant ones are:

Biography

Biography often contains descriptive information about the user. The contents of the

biography of a user can provide very useful when searching for keyword. It allows us

to detect or filter effectively certain topic related users, increasing the likelihood that

19

CHAPTER 3. CHARACTERIZING SOCIAL CONTEXT

these users are more influential or popular in those topics.

Account age

The age since the account was created. Account age can influence the popularity or

relationships of the user. It is more likely that an older account has a high level of

relevance and popularity, as it has been able to improve and develop its relevance

and popularity over time, establishing new relationships and increasing its network.

Moreover, recent accounts may also be popular, but these tend to be isolated cases.

It is a secondary metric and rarely used.

Number of followers

This is the number of followers that a certain user has. This number indicates the

amount of users that get updates about the user’s activity. This is a good metric

to estimate the popularity of the user and the network of users who will receive its

messages. On the other side, a high number of followers does not always imply high

relevance, so we can find users with more followers than others but with less relevance

[12].

Number of friends

This is the number of user that the user is following. This is a less used metric than

the number of followers and less influential. Tt does not provide much information

by itself, since a user who follows many accounts does not need to have relevance.

Furthermore, by combining this metric with the number of followers, we can know

how well interconnected a user is with his environment [12].

Associated groups

Social media like Facebook allow the creation of user groups, and users may choose

to join one or more groups. In other media Twitter, this may be a list of user lists

the user has been added to. The difference between both cases would be that in the

former groups are global and users choose their own groups, whereas in the latter each

user has their own lists and chooses who to add to them. In other words, one is an

active selection and the other is a passive one.

3.2.2 Behaviour

This group includes all the parameters related with the user’s behaviour. Obtaining these

metrics is not always an straight forward process and could require some calculations. The

metrics of this group are less static than the profile attributes. The most relevant ones are:

20

3.2. USER

Recent activity

In an environment where messages have a very short lifespan, is very important to be

an active user and perform publications often. Knowing the recent activity of a user

allows us to filter active accounts and also adds value to users with a constant activity

rate. Moreover, this measure loses its value in isolation, because, as in the case of the

number of tweets, a very active user does not have to be an influential one.

Number of tweets

The number of post the user has published since the account was created.This metric

gives us an idea of the level of activity of this user over time. A large volume of tweets

makes it more likely that a user stands out, but it is not always the case. On the

other hand, this metric is not indicative of popularity or relevance by itself. It may

be the case of a user with large number of tweets who is not influential or has little

impact on the network. A “noisy” user does not have to be influential.

Number of mentions

The number of times that the user has been named and tagged in a publication. The

number of mentions that a user has is usually considered to be a good indicator of

popularity and influence, since it involves interaction with the rest of the users. A

user with a large number of mentions is probably very popular and influential in his

network. On the other hand, a user who does not have a large number of mentions is

not necessary a low influential one, which makes this metric only add positive value

to the relevance of a user [12].

Number of retweets

The amount of times that tweets created by the user are shared. The number of

retweets a user receives is a good indication of his popularity and relevance. A high

number of retweets implies that the followers of the user usually find interesting or

important the content published by the user, which makes him more influential in

the network. Besides indicating a high degree of relevance, this metric also has a

high correlation with other metrics such as the number of followers, the number of

mentions or generated traffic.

3.2.3 Network

This group includes all the parameters related with the user’s network, in particular the

parameters that act as proxy for the user’s influence and his relevance in this network, e.g.

21

CHAPTER 3. CHARACTERIZING SOCIAL CONTEXT

betweenness, connectedness, in/out-degree, etc. explained in Chapter 2. This also includes

the relationships with other users and content in the network. The network can be con-

structed in different ways as well, using either user-to-user or user-to-content interactions.

Two examples would be using follower/friend relationships and using the comments net-

work. It is common to combine the metrics above with metrics of the content generated by

users and their closest network.

The most important metric in this group is the influence of the user. This metric

measures the “amount of attention” that a user receives from the rest of the users. An

influential user will receive more attention from other users and his content will be more

relevant A good indicator of the relevance of a user is the influence of the users in his

network. An influential user generally surrounds and connects with other influential users.

Therefore, better connected users tend to be more influential [12].

3.3 Content: Tweets

Content in social media is the information created and shared by the users. Tweets are the

default content in Twitter. Content information can be split in three groups: attributes,

propagation and network.

3.3.1 Attributes

Content attributes are data associated with the content being shared:

Creator

The same content shared by different people has a very different impact on the net-

work. Oftentimes, the audience only depends on the original creator, their network

of followers. These factors greatly affect user reactions.

Keywords

Keywords can be used to group different topics together, and to extract concepts

and entities from text. When analysing the relevance of a tweet on a certain topic,

keyword research is very important. On the other hand, this method not always

works perfectly because it is common that a tweet related to a topic does not include

keywords or use synonyms. This can cause that we may filter some valuable tweets

in our search [13].

22

3.3. CONTENT: TWEETS

Tweet emotion/sentiment

The emotion or sentiment expressed in content can affect other people’s reactions.

Often the sentiment of the tweet affects directly to its relevance. The problem with

this metric is that it is dependent of the subject and context [13].

Tweet date

Content is ephemeral, its value or potential rapidly degrades with time. In other

cases, such as social news, the content is tied to specific real life events or contexts.

An old tweet will have little to no impact today.

Topics

As with keywords, topics are very useful to group content. Moreover, it is a crucial

part for emotion recognition, which is domain dependent.

Media

Textual content may also have multimedia attached. For instance, a Tweet with a

picture.

External links

Tweets often have links to content from outside the social network. For instance, a

link to a newspaper.

3.3.2 Propagation

This kind of information characterises how content is shared and received by other users.

Most of these features are dynamic, and we can analyse both the value at a specific point

in time or the evolution of this value. Some examples would be: time to achieve a certain

amount of reshares, editions to the content over time or evolution of favourites over time.

The most important metrics in this group are:

Number of retweets

Like in the case of a user, a tweet with a large number of retweets has great popularity

and indicates that the users that retweeted it find it interesting, making it a good

indicator of influence.

Number of favourites

The amount of times that a tweet has been marked as ”favourite” by a user. A

23

CHAPTER 3. CHARACTERIZING SOCIAL CONTEXT

high favourite count indicate that a tweet is very popular. On the other hand, a

low favourite count does not imply low popularity. In general, people prefer to use a

retweet to indicate interest in a tweet, rather than favourite. It is a secondary metric

and it can be replaced by the number of retweets in most cases.

Number of replies

Also known as comments in some networks, this feature measures direct reactions

from other users. In contrast to favourites and reshares, which have an inherently

positive charge, replies may be negative and include criticism.

Number of views

In media like Facebook or Youtube, it is possible to determine how many people have

accessed the content. This feature is important when combined with others, as it is a

proxy measure of neutral reactions.

3.3.3 Network

How content is related to other content and users in a social network often offers valuable

insights about the content. The interactions between users and content forms a graph or

network that can be studied. This concepts have been already introduced in Chapter 2.

This information can be used to detect social media phenomena, such as cascades or memes.

These are some of the relationships that can be used, alone or in combination, to form this

network: Creation/Modification/Deletion (User - Content); Reshare/Favourite/View (User

- Content); and Mention/Reply (Content- Content).

The most important metrics in this group is the tweet influence.This metric measures

the “amount of attention” that a tweet receives from the users. Influential tweets will receive

more attention and will be more likely to be shared. When determining the relevance of a

tweet, it is really important to take into account the influence of the user who posts it, the

influence of the users that read the tweet and the influence of the users that retweet it. A

tweet published by an influential user and retweeted by influential users will generally be a

very influential one.

3.4 User and Tweet Influence

From all of the metrics explained above, the influence of a user or a tweet is one of the

most complex. It can not be obtained directly and it is necessary to estimate it from other

24

3.4. USER AND TWEET INFLUENCE

metrics. Nowadays there is no clear way to calculate it, but there are different approaches

and different companies are using their own methods to calculate it. In the next sections

we are going to study the different approaches available.

We have conducted a small study to find out what are the principal applications that

use SNA to measure influence on Twitter. We will present a list of the principal solutions,

with the metrics they use and the importance of each in their calculations.

3.4.1 Social Authority

It is a solution from Moz company, dedicated to developing applications to improve online

marketing companies [14]. It is a tool to calculate the influence of Twitter users, giving them

a score called Social Authority. To calculate this score, they employ a private algorithm, but

they have published the metrics they use. Their main metrics are the number of retweets

of the user, the retweet rate of the published tweets by the user, the user’s recent activity

and the age of the tweets. As secondary metrics, to adjust the values, they use the number

of followers and friends of the users, the number of mentions, etc.

3.4.2 Follower Wonk

This is another product of Moz company and it allows to analyse the network of a user to

understand better their followers and improve his marketing strategy [15]. This application

extracts basic information about each user (account age, number of tweets, tweets per week,

etc) in addition to an analysis of the content of their biography searching for keywords. This

search allow you to search the company target audience to expand or improve their relations

in the social network.

3.4.3 Klout Score

It is a measurement tool of influence with great acceptance and it is for many the “standard

ranking of the influence” [16]. This tool measure the influence of a user on a scale from 0

to 100. The score is calculated by combining the activities of the user in up to 12 different

social networks. To do this, the company uses more than 30 algorithms that are not publicly

available and they update the scores daily. To calculate the score, they combine three factors

that they have called “real scope”, “amplification” and “impact on the network”:

• Real scope: It is not about the number of followers, but the number of users on which

25

CHAPTER 3. CHARACTERIZING SOCIAL CONTEXT

the user exerts influence. To determine it, they analyse how people who follow the

user interact with him and with his content.

• Amplification; This metric means how much a user influences over the people in his

network. They measure it considering how the messages of the user lead to conver-

sation or are replicated. Each of these actions are considered a sign of authority and

quality of the user content.

• Impact on the network: This measure calculates the influence of the followers of the

user who are within his true scope. In other words, it measures the “quality” of the

followers of the user.

3.4.4 PeerIndex

It is defined as a tool for measuring and understanding the “social capital” that a user has

achieved in the online environment. In this case, they focus more on the concept of notion

of authority and reputation rather than the influence. PeerIndex set the following 8 large

topics (subdivided into 8000 more specific subtopics):

• Art, media and entertainment

• Technology and Internet

• Science and environment

• Health

• Sports

• Current topics, politics and society

• Business and economy

• Leisure and lifestyle

Within each topic, Peerindex rate its users from 0 to 100 based on three components:

• Authority: “The measure of confidence”. It is the way in which the rest of the people

rely on the recommendations and opinions of the user evaluated, both generally and

on specific topics.

26

3.4. USER AND TWEET INFLUENCE

• Audience: it is equivalent to the parameters of “real scope” and “amplification” of

Klout. It measures the impact of user actions over his followers and the way in which

they link his content.

• Activity: Represents the update frequency of the user status in relation to the rest of

the PeerIndex community around a topic. This update frequency is valued according

to the nature of the topic, where it is not always positive a higher level of activity.

The information needed to score each user is obtained through a semantic analysis of the

content of the URLs shared by the user in his tweets, allowing to identify the five most

important topics for him. Again, the mechanisms used to calculate the score are private for

reasons of competitiveness.

3.4.5 Twitter Rank Algorithm

After studying how the companies calculate the relevance and influence of tweets and users,

we have studied the algorithm proposed by Noro, T., Ru, F., Xiao, F. and Tokuda, T. in

”Twitter user rank using keyword search” [17] that it is currently in development [18]. This

is an algorithm allows to calculate the influence of tweets and users that are the result of a

search, assuming that their influence is a value linked to the context.

During the development of the platform, we have made an implementation of this al-

gorithm. Below, we will explain how this algorithm works, what information uses and the

data obtained. It will be divided in two sections: User relevance and Tweet relevance.

3.4.5.1 User relevance

In their work, they describe a method for finding relevant users im the target topic (called

topic-related users). In their research, they have the following assumptions about the rele-

vant users.

1. Good topic-related users usually post valuable tweets on the target topic.

2. The valuable tweets on the topic draw the attention of many users.

3. Each user pays attention to the tweets the user retweets or replies to.

4. Each user also pays attention to the tweets posted by the user’s friends (followees).

27

CHAPTER 3. CHARACTERIZING SOCIAL CONTEXT

Based on these assumptions, we define the user relevance score of each user u as follows:

UserRel(u) = TR(u)wr × UI(u)wi × FR(u)wf (3.1)

TR(u), UI(u) and FR(u) are respectively “tweet rate (TR) score”, “user influence (UI)

score”, and “follow relation (FR) score” of user u ranging between 0 and 1. wr, wi, and wf

are non- negative values where the sum of the values is equal to 1. The TR score is based

on the tweet frequency, and reflects the first assumption. The UI score is based on the

tweet, retweet, and reply activities and the follow relation, and reflects the second, third,

and fourth assumptions. The FR score is based on the follow relation, and reflects the

second and fourth assumptions.

Tweet Rate (TR) Score

The topic-related users post many tweets relevant to the target topic. However, there

are some users who post many relevant tweets and much more irrelevant tweets (some

users post hundreds of tweets on various topics every day). In order to exclude such

users, we consider the tweet rate instead of the number of each user’s tweets searched.

In calculation of the TR score, we count not only each user’s original tweets but also

retweets as the user’s own tweets. Some of the topic-related users usually retweet

tweets relevant to the topic originally posted by others, which means they play a role

of “filter” searching for valuable relevant tweets and sharing them with their followers.

This metric measures the proportion of tweets related to the topic that a user posts

or retweets. We use the following formula to calculate it:

TR(u) = |t|tεT∧t.user.id=u.id|
|Total(u))| (3.2)

Where t is a tweet posted by the user that is relevant to the topic and Total(u) are

the total amount of tweets posted by the user u during the topic search duration.

User Influence (UI) Score

The basic idea is:

1. Users who post many tweets on the target topic paid attention to by many users

are good topic-related users.

2. Tweets of the good topic-related users are often paid attention to by other good

topic-related users.

28

3.4. USER AND TWEET INFLUENCE

How much each tweet is paid attention to by others is measured according to the

retweet and reply activities and the follow relation. Based on this idea, we define not

only the UI score of each user but also “tweet influence (TI) score” of each tweet.

The UI score of each user is calculated using the TI score of the user’s tweets and

retweets, and the TI score of each tweet is calculated using the UI score of users who

pay attention to the tweet. The UI score and the TI score are defined as follows:

u = BT
t t t = BT

a u (3.3)

u and t indicate a column vector of the UI score and a column vector of the TI score

respectively. Bt is the tweet-to-user relation matrix based on what (tweet) is posted

or retweeted by whom (user), and Ba is the user-to-tweet relation matrix based on

who pays attention to what. To derive the two relation matrices Bt and Ba, we create

a reference graph consisting of user nodes, tweet nodes, and directed edges each of

which connects a user node and a tweet node, called “tweet activity relation graph”.

The tweet activity relation graph is represented as combination of three adjacency

matrices At, Ar, and As.

At(ti, uj) =


1 if ti is posted/retweeted by uj

0 otherwise

(3.4)

Ar(uj , ti) =


1 if uj retweets/replies to ti

0 otherwise

(3.5)

u0 = (
1

|U |
,

1

|U |
, ...,

1

|U |
) t0 = (

1

|T |
,

1

|T |
, ...,

1

|T |
) k = 1 (3.6)

Repeat tk = BT
a uk−1 uk = BT

t tk (3.7)

k = k + 1 until k = 10000 (3.8)

As(uj , ti) =


1 if uj follows at least 1 user who post/retweets ti

0 otherwise

(3.9)

ti and uj indicates the i-th tweet and the j-th user respectively. At represents what

is posted or retweeted by whom, and Ar and As represent who retweets or replies

29

CHAPTER 3. CHARACTERIZING SOCIAL CONTEXT

to what and who sees what respectively. It is natural for users to reply if they are

mentioned by others, and some users often retweet tweets mentioning themselves.

These activities are ignored in creation of the tweet activity relation graph since they

do not always depend on topics. Activities replying to themselves are also ignored.

The adjacency matrices are transformed into the two relation matrices Bt and Ba as

follows:

Bt(ti, uj) =
At(ti, uj)∑
k At(ti, uk)

(3.10)

Ba(uj , ti) =


Ar(uj ,ti)∑
k Ar(uj ,tk)

(1− d) +
As(uj ,ti)∑
k As(uj ,tk)

d if
∑

k Ar(uj , tk) 6= 0

As(uj ,ti)∑
k As(uj ,tk)

otherwise

(3.11)

d is a damping factor of 0 < d < 1. The matrix Ba reflects the third and the forth

assumptions about the topic-related users. Each user pay attention to tweets the

user retweets or replies to, and the user also watches all tweets at a certain rate of

d regardless of the user’s activities. Tweets posted or retweeted by the user’s friends

are more likely to be seen than the other tweets. The UI score and the TI score are

calculated using the power iteration method as shown in Figure 2. uk and tk indicate

the UI score and the TI score at the k-th iteration respectively. U and T are a set of

user nodes and a set of tweet nodes in the tweet activity relation graph. Lastly the

UI score is normalized so that the largest value should be 1.

UI(uj) =
u(j)

maxku(k)
(3.12)

Follow Relation (FR) Score

The FR score is calculated based on the follow relation using PageRank [19]. A

reference graph consisting of user nodes and directed edges each of which connects

two of the user nodes, called “follow relation graph”, is created from the follow relation.

The graph is represented as the following adjacency matrix:

Af (ui, uj) =


1 if ui follows uj

0 otherwise

(3.13)

Bf (ui, uj) =


Af (ui,tj)∑
k Af (ui,uk)

(1− d) + d
|U | if

∑
k Af (ui, uk) 6= 0

1
|U | otherwise

(3.14)

30

3.4. USER AND TWEET INFLUENCE

f = BT
f f (3.15)

ui and uj indicates the i-th user and the j-th user respectively, and d is a damping

factor. U is a set of user nodes in the follow relation graph, and f is a column vector

of the FR score. The FR score is normalized so that the largest value should be 1.

FR(ui) =
f(i)

maxkf(k)
(3.16)

3.4.6 Tweet relevance

They describe a method for finding relevant tweets to the target topic. The method consists

of two parts: calculation of the Voice score and the Impact score of each user based on the

user activity, and ranking tweets based on who posted, retweeted, or replied to each of the

tweets in the system.

Voice and Impact Score Calculation

In order to judge the relevance of each tweet to the target topic, we have the following

assumptions about tweets relevant to the topic (relevant tweets).

1. The relevant tweets are posted or retweeted by the topic-related users.

2. The relevant tweets are paid attention to (retweeted or replied to) by many

topic-related users.

3. Tweets posted, retweeted, or replied to by good topic-related users are more

relevant to the topic.

These assumptions are close to the idea of the TI score defined above. Tweets with

high TI score are paid attention to by users with high UI score, and users with high UI

score post and retweet tweets with high TI score. However, we need tweets posted in

a certain time period and the follow relation among the users appearing in the tweets

to calculate the TI score, which means that it is difficult to apply the calculation to

tweet data streams since the score of newly-arrived tweets cannot be calculated on

the fly. Instead, we estimate the TI score of newly-arrived tweets based on the TI

score and the UI score derived from the past tweet data.

We have two ideas for estimating the score of a newly-arrived tweet. According to

the definition of the TI score, the score of the newly-arrived tweet can be estimated

from the UI score of the users who retweeted or replied to the tweet. The other idea

of the score estimation is considering the TI score assigned to the past tweets and

31

CHAPTER 3. CHARACTERIZING SOCIAL CONTEXT

retweets of the users who posted or retweeted the newly-arrived tweet. For the score

estimation, we define two kinds of score of each user, called “Impact” and “Voice”.

The Impact score is used for the estimation based on the first idea, and the Voice

score is used for the estimation based on the second idea. The Impact score of user u

(appearing in the tweets collected in the search) is defined as follows:

Impact(u) =


UI(u)

|Relate(u)|+σi × (1− d) + UI(u)
|T | × d if |Relate(u)| > 0

UI(u)
|T | otherwise

(3.17)

Relate(u) indicates a set of tweets the user u retweeted or replied to, and T indicates

a set of all tweets obtained in the search (i.e. a set of tweet nodes in the tweet activity

relation graph). σi is a smoothing parameter (i ≥ 0) and d is the damping factor used

in Ba equation. Unlike the case of the user relevance score calculation, we use the

unnormalized UI score for the Impact score calculation. Some users frequently retweet

other users’ tweets without taking a moment to read them, and such users have little

impact on other users’ tweets. The definition of the Impact score reflects this idea.

In the definition of the Voice score of user u (appearing in the tweets collected in the

search), we consider the score for the user’s original tweets (V oicet) and the score

for the user’s retweets (V oicer) separately. This is because some users post valuable

original tweets related to the target topic and some other users search for and retweet

valuable tweets posted by other users (some users do both).

V oicet(u) =
1

|Tweet(u)|+ σv

∑
tεTweet(u)

TI(t) (3.18)

V oicer(u) =
1

|Retweet(u)|+ σv

∑
tεRetweet(u)

TI(t) (3.19)

Tweet(u) and Retweet(u) indicate a set of the user u’s original tweets and a set of

the user’s retweets respectively. Poster(t) is a set of users who posted or retweeted

the tweet t. σv is a smoothing parameter (σv ≥ 0). The V oicet score is not defined

here if the user’s original tweet set is empty, and the V oicer score is not defined if

the user’s retweet set is empty. We will describe how to deal with the users with the

undefined Voice score in the next subsection. The Voice score is the average TI score

for the user’s original tweets or retweets. The TI score of tweets retweeted or replied

to by many users is likely to be high, which means the V oicer score of users who just

retweet only a few tweets retweeted or replied to by many users may be higher than

expected.

32

3.4. USER AND TWEET INFLUENCE

Tweet Ranking

Previously, we collect tweets posted or retweeted by the topic-related users and

retweets of the topic-related users’ tweets, calculate the tweet relevance score of each

tweet from the Voice score and the Impact score, then select the top-M tweets ranked

by the tweet relevance score as the tweets relevant to the target topic. The tweet

relevance score is defined separately according to the version of the Voice score. We

use the following formula:

TweetRel(t) = α× V R(t) + (1− α)× IR(t) (3.20)

V R(t) = V oice(t.user) (3.21)

IR(t) =
∑

uεRelated(t)

Impact(u) (3.22)

V R(t) and IR(t) are respectively “Voice-based Relevance (VR) score” and “Impact-

based Relevance (IR) score”. Alpha ranges between 0 and 1. V oice(u) indicates the

Voice score of the user u (V oicet if u is the original poster of the tweet t, and V oicer

if u retweeted t). Poster(t) and Related(t) are a set of users who posted or retweeted

the tweet t and a set of users who retweeted or replied to the tweet t respectively.

t.user is the original poster of the tweet t. The VR score and the IR score can be

considered as the estimated TI score calculated from the Voice score and the estimated

TI score calculated from the Impact score respectively.

33

CHAPTER 3. CHARACTERIZING SOCIAL CONTEXT

34

CHAPTER4
Requirements Analysis

This chapter introduces the requirements analysis for the project. It is important to

perform a requirements analysis to make sure the final solution will be adequate for

real life applications, and to broaden the variables taken into consideration, making it

less likely to miss a key aspect in the design process.

35

CHAPTER 4. REQUIREMENTS ANALYSIS

36

4.1. OVERVIEW

4.1 Overview

In this chapter, we are going to present some of the possible use cases of our system, in

order to define the requirements for our platform. This use cases will help us finding the

necessities of our potential users.

4.2 Use Cases

Influence analysis has many possible uses and interests nowadays, varying from a user

who wants to know his influence or his ”score”, to a company which wants to analyse the

influence of his messages, marketing or products. We can set several use cases depending

on the future user of the system. In the following sections, five different use cases will be

presented.

4.2.1 UC1: Brand Monitoring

Enterprise SA. is an average marketing company. They have decided that they need a way

to get feedback online of their products in the market. Specifically, they want to know what

people are saying about their products in Twitter. They decide to use SCANER for this

analysis. They begin to collect tweets with the keywords of their products and load them

into the system through the API. SCANER will extract the information about the users and

tweets related. It will give a ranking of the most relevant positive and negative tweets in

the keyword search, with the corresponding emotion and the information of the user. Now,

Enterprise SA. can have a list of the most influential tweets about their products, meaning

that they can know what the most influential users think about their products and what

are the most influential opinions. This will help Enterprise SA. to improve them.

4.2.2 UC2: Emotion Analysis

A set of researchers want to analyse the spread of emotions in Twitter and they decide

to use SCANER. They load a set of tweets from an important event into the platform.

SCANER will extract the information about related users and tweets. It will annotate the

emotions of the different tweets, and their relationships with the other tweets. With this

information, the developers can study the original tweets with their emotions, and how this

tweets spread through the network.

37

CHAPTER 4. REQUIREMENTS ANALYSIS

Figure 4.1: UC1: Brand Monitoring

Figure 4.2: UC2: Emotion Analysis

4.2.3 UC3: Targeting

Enterprise SA. wants to launch a new product in a determined sector, and they want to

have the most influential users of Twitter in this sector to do advertising of the product.

They decide to use SCANER for this. They load a set of tweets from a hashtag search of

the sector. SCANER will extract the information about the users and tweets related to this

search. Once the data is analysed, Enterprise SA. will have a ranking of the more influential

users in the sector, so the can contact them for their marketing campaign.

38

4.2. USE CASES

Figure 4.3: UC3: Targeting

4.2.4 UC4: Task Monitoring

Enterprise SA. wants to know the status of a targeting process that has being initiated

through a request. They will connect to the server and use the task status REST call with

their task id. The server will return the status of the task, and if it is finished, the results.

Figure 4.4: UC4: Task Monitoring

39

CHAPTER 4. REQUIREMENTS ANALYSIS

4.2.5 UC5: Spread of Content

Online News is an online newspaper that uses Twitter to share their most import news.

They want to analyse the spread of their content and they uses SCANER for it. They will

load a set of tweets and retweets of their tweets into the platform. SCANER will extract

the information about the users and tweets related, and will create the network with all the

relationships. Online News now can study which users are sharing most of their content,

which content is more popular, and the real spread of the news.

Figure 4.5: UC5: Spread of Content

4.3 Database requirements

As stated in Chapter 2, data from social media has a particular set of properties that make

us require an storage system with specific requirements. These requirements are:

• Primary:

– Advanced relationships capabilities: As said in chapter ??, the data that will be

used in the system is social media data. This data focuses on the relationships

between the users and the content. With data with these characteristics, we

require an infrastructure capable of manage these relationships and work with

them in an efficient way.

– Query speed: Due to the large amounts of data we are going to work with, we

need a data infrastructure capable of delivering fast queries and data access.

40

4.4. SUMMARY OF REQUIREMENTS

– Traverse speed: Due to the importance of the relationships in our data, it is

crucial to be able to traverse through this relationships efficiently. Instead of

query each record separately, we need to be able to query related records using

their relationships, making it faster to access related data. It will be one of the

main operations that will be performed with the data, so we need high speed.

– Unstructured data optimization: In social media data, a large part of the data is

unstructured data. The term unstructured data (or unstructured information)

refers to information that either does not have a pre-defined data model or is not

organized in a pre-defined manner. Unstructured information is typically text-

heavy, but may contain data such as dates, numbers, and facts as well. Usually,

the content generated by the users matches this description, because it can vary

widely from user to user, or type of content to type of content. Due to this, we

need and efficient and reliable way to store unstructured data in our system.

– Open Source: Open Source software has a series of advantages such as costs

(generally free), continually evolving, you are not tied to a particular vendor’s

system and you can adapt and modify the software for our own requirements.

• Secondary:

– Python API package: As we have chosen Python as the programming language

for the project, it is important to have a python library that allows to create an

easy way to communicate with the database directly from the application, code

in a reliable and efficient way.

– Distributed: In case that the volume of data grows too large, or our computation

resources for a single machine are limited, having a distributed database infras-

tructure could improve our performance and allow to use multiple less powerful

computers to run the queries and operations.

4.4 Summary of requirements

After analysing the previous use cases, some clear requirements seem to stand out. Many of

the user cases require similar features or certain characteristics in the architecture, pointing

out the necessities or requirement of the system. In this section we will present those

requirements, separated in two groups: functional and non-functional requirements.

41

CHAPTER 4. REQUIREMENTS ANALYSIS

4.4.1 Functional requirements

• FR1: The system must be able to link, relate, extract and process information from

Twitter. We can observe this requirement in user cases UC1, UC2, UC3 y UC5.

• FR2: The system must update information in order to analyse spread and evolution.

We can observe this te in user cases UC1, UC2 y UC5.

• FR3: The system must differentiate the data and classify it into different topics for

different analysis. We can observe this requirement in user cases UC1, UC2, UC3 y

UC5.

• FR4: The system must update information in order to analyse spread and evolution.

We can observe this requirement in user cases UC1, UC2 y UC5.

• FR5: The system must be able to integrate other services such as the Emotion

Analysis Module in order to extend its functionality. We can observe this requirement

in user cases UC1, UC2 y UC3.

• FR6: The system must be able to process the data offline, if it was already stored in

the database.

• FR7: The system must offer a mechanism to retrieve the processed data if this

information can not be delivered in real time. We can observe this requirement in

user cases UC4.

• FR8: The system must have a mechanism to load data available for final users. We

can observe this requirement in user cases UC1, UC2, UC3 y UC5.

4.4.2 Non-functional requirements

• NFR1: The system mechanism to load the user data into the system must be user-

friendly. We can observe this requirement in user cases UC1, UC2, UC3 y UC5.

• NFR2: The system must be able to process huge amounts of data, even when it is

received simultaneously. We can observe this requirement in user cases UC1, UC2,

UC3, UC4 y UC5.

• NFR3: The system must offer a modular architecture. We can appreciate this re-

quirement in all of the user cases.

42

4.4. SUMMARY OF REQUIREMENTS

• NFR4: The system must comply with Twitter API limitations and policy. This

requirement is not directly defined, but is present in all use cases.

43

CHAPTER 4. REQUIREMENTS ANALYSIS

44

CHAPTER5
Enabling Technologies

This chapter introduces which technologies have made this project possible. First of

all the programming language, explained in section 5.1. Second of all, the technology

that allows to virtualize the system and deploy it with a stable configuration and fast

will be presented in section 5.2. Third, the storage support for the system, where all

the social media data, will be presented in section 5.3. Finally, the technologies that

have been used to develop the web interfaces that enable the RESTful API and the

interaction with the users.

45

CHAPTER 5. ENABLING TECHNOLOGIES

46

5.1. PYTHON

5.1 Python

In this project we are going to use Python as the programming language for our software.

In general, Python is an efficient language that has three main characteristics that improves

its efficiency: dynamically typed, concise and compact [20]. It has an easy syntax, high

readability, it is object oriented and extensible. All of these features aid in prototyping,

shorten the development cycle and result in a cleaner, smarter and more effective code. It

simplifies and accelerate the development process, also making it very accessible [21]. It

is worth mentioning the large amount of libraries available for Python, which reduces the

coding work.

However, it has some disadvantages, such as concurrency. Concurrency and paral-

lelism, although completely possible in Python, are not designed-in for elegant use, as with

JavaScript and Go. Other disadvantage is the speed, because Python is executed by an

interpreter instead of compilation, which causes it to be slower than if it was compiled and

then executed. However, for most applications, it is by far fast enough.

5.2 Docker

For the deployment of this project, we are going to use Docker. Docker is a platform that

allows to package an application with all of its dependencies into a standardized unit for

software development [22]. Docker containers wrap up a piece of software in a complete

filesystem that contains everything it needs to run: code, runtime, system tools, system

libraries – anything you can install on a server. This guarantees that it will always run the

same, regardless of the environment it is running in.

Containers have similar resource isolation and allocation benefits as virtual machines

but a different architectural approach allows them to be much more portable and efficient.

These containers include the application and all of its dependencies, but share the kernel

with other containers. They run as an isolated process in userspace on the host operating

system. They’re also not tied to any specific infrastructure. The main advantages of this

platform are the ability to accelerate developer onboarding, the easy sharing and distribution

and the capacity to eliminate environment inconsistencies.

47

CHAPTER 5. ENABLING TECHNOLOGIES

5.3 Database

For this project, we need a storage infrastructure that is able to store social media data in

an efficient way. As said above, social media data is structured in a particular way, where

the relationships are more important than the content itself. We are going to take a look

on the different options available in the market and what requirements they fulfill.

5.3.1 Relational Databases

Relational databases are one of the fundamental building blocks of modern database archi-

tecture and are designed for fast storage and retrieval of large quantities of data [23].

In this type of databases, the data is stored in relational model, with rows and columns.

Rows contain all of the information about one specific entry, and columns are all the separate

data points. Each record conforms to fixed schema, meaning the columns must be decided

and locked before data entry and each row must contain data for each column. This can be

amended, but it involves altering the whole database and going offline. In these databases,

the scaling is vertical. In essence, more data means a bigger and more powerful server. It is

also possible to scale a relational database across multiple servers, but this is a difficult and

time-consuming process. The vast majority of relational databases are ACID compliant.

Relational databases mainly use SQL as the language for querying and maintaining the

database.

A hefty part of designing a relational database is dividing the data elements into related

tables. Once you’re ready to start working with the data, you rely on relationships between

the tables to pull the data together in meaningful ways [24]. In relational databases,

relationships link two or more tables. There are three different types of association between

tables:

• One-to-one: Both tables can have only one record on either side of the relationship.

Each primary key value relates to only one (or no) record in the related table. Most

one-to-one relationships are forced by business rules and don’t flow naturally from the

data. In the absence of such a rule, it is usually possible to combine both tables into

one table without breaking any normalization rules.

• One-to-many: The primary key table contains only one record that relates to none,

one, or many records in the related table.

• Many-to-many: Each record in both tables can relate to any number of records (or no

48

5.3. DATABASE

records) in the other table. Many-to-many relationships require a third table, known

as an associate or linking table, because relational systems can’t directly accommodate

the relationship.

The database system relies on matching values found in both tables to form relationships.

When a match is found, the system pulls the data from both tables to create a virtual record.

Most of the time, the resulting record is dynamic, which means any change made to the

virtual record will usually work its way back to the underlying table. A diagram of the

structure of a relational database is shown in Figure 5.1.

The most popular relational databases in the market are Oracle Database, MySQL and

Microsoft SQL Server [25].

Figure 5.1: SQL Relationship Model

5.3.2 Document-oriented databases

Document-oriented databases can be considered to be next step to the key-value stores be-

cause they store more complex data than the key-value stores [26]. The central concept of

a document-oriented database is the notion of a document. While each document-oriented

database implementation differs on the details of this definition, in general, they all assume

documents encapsulate and encode data (or information) in some standard formats or en-

codings. Documents are records that describe the data in the document, as well as the

49

CHAPTER 5. ENABLING TECHNOLOGIES

actual data; and allow values to be nested documents or lists as well as scalar values, and

the attribute names are dynamically defined for each document at runtime.

In this type of database, the relationships between entries can be created in two ways

[27]:

• References Relationship: This type of relationship stores the data by including links

or references, from one document to another. Applications can solve these references

to access the related data in the structure of the document itself.

• Embedded Documents: This type of relationship stores in a single document structure,

where the embedded documents are disposed in a field or an array. These denormalized

data models allow data manipulation in a single database transaction.

This presents a set of advantages, such as an improvement in performance due to the

fact that the different information of a record is stored contiguously in memory and that

speeds up the access. The other main advantage of this structure is their ability to store

unstructured data in a simple and efficient way. The most popular document-oriented

database in the market is MongoDB [28].

5.3.3 Graph-oriented databases

Graph-oriented databases are a type of database in which the data structures for the schema

and instances are modeled as a directed, possibly labeled, graph, or generalizations of the

graph data structure, where data manipulation is expressed by graph-oriented operations

and type constructors, and appropriate integrity constraints can be defined over the graph

structure [29]. Graph-oriented databases are used in areas where information about data

interconnectivity or topology is more important, or as important, as the data itself. In

these applications, the data and relations among the data, are usually at the same level.

Introducing graphs as a modeling tool has several advantages for this type of data:

• It allows for a more natural modeling of data. Graph structures are visible to the user

and they allow a natural way of handling applications data, for example, hypertext or

geographic data. Graphs have the advantage of being able to keep all the information

about an entity in a single node and showing related information by arcs connected

to it. A user can define some part of the database explicitly as a graph structure,

allowing encapsulation and context definition.

50

5.3. DATABASE

• Queries can refer directly to this graph structure. Associated with graphs are specific

graph operations in the query language algebra, such as finding shortest paths, deter-

mining certain subgraphs, and so forth. Explicit graphs and graph operations allow

users to express a query at a high level of abstraction.

• For implementation, graph databases may provide special graph storage structures,

and efficient graph algorithms for realizing specific operations.

Graphs databases contains connected entities (the nodes) which can hold any number

of attributes (key-value-pairs). Nodes can be tagged with labels representing their different

roles in the domain. In addition to contextualizing node and relationship properties, labels

may also serve to attach metadata, index or constraint information, to certain nodes[30].

Figure 5.2: Graph-oriented Database Relationship Model

In this type of database, relationships provide directed, named semantically relevant

connections between two node-entities. A relationship always has a direction, a type, a

start node, and an end node. Like nodes, relationships can have any properties. In most

cases, relationships have quantitative properties, such as weights, costs, distances, ratings,

time intervals, or strengths. As relationships are stored efficiently, two nodes can share any

number or type of relationships without sacrificing performance. Note that although they

are directed, relationships can always be navigated regardless of direction. A diagram with

the structure of a graph database is shown in Figure 5.2. There is one core consistent rule

in a graph database: “No broken links”. Since a relationship always has a start and end

51

CHAPTER 5. ENABLING TECHNOLOGIES

node, you can’t delete a node without also deleting its associated relationships. You can

also always assume that an existing relationship will never point to a non-existing endpoint.

The most popular graph-oriented database in the market is Neo4j [31].

5.3.4 Hybrid databases

Hybrid databases are NoSQL databases which main characteristic is that they combine

two or more database schemas in one database system. The properties of these databases

depends on the combination of schemas they use. One of the most used hybrid databases

is OrientDB [32]. It is a combination of document-oriented and graph-oriented databases,

combining the advantages of both schemas.

5.3.5 Comparison

Previous sections have introduced the types of databases. For this project, we have com-

pared the most popular databases of each type in the context of social network information.

Relational Databases have the advantage of the query speed, but lack the relationship

structure that we need to use in order to get efficient operations and they do not support

unstructured data.

Document-oriented Databases have the advantages of accepting unstructured data and

fast query speed, specially for adjacent data. The problem with this type of databases is

that the lack the relationship structure aforementioned.

The results of this comparison are shown in Table 5.1.

After analysing the different options available for our database choice, we have decided

to choose OrientDB. OrientDB is a hybrid graph-document oriented database. It combines

the speed and flexibility of document-oriented databases with the advanced relationship

capabilities of graph-oriented databases. Its main features are [33]:

• Apache 2.0 license

• ACID transactions

• Free of cost

• Gremlin Language for graph computing

• SQL language Syntax for graph computing

52

5.3. DATABASE

Table 5.1: DB comparative

DB A
d

va
n

ce
d

re
la

ti
o
n

sh
ip

s

Q
u

er
y

S
p

ee
d

T
ra

ve
rs

e
S
p

ee
d

U
n

st
ru

ct
u

re
d

d
at

a
o
p
ti

m
iz

a
ti

o
n

O
p

en
S

ou
rc

e

P
y
th

o
n

A
P

I
p

ac
ka

ge

D
is

tr
ib

u
te

d

L
ic

en
se

MySQL No High Low No Yes Yes Yes GPLv2

Oracle No High Low No No Yes No Product License

MongoDB No High Low Yes Yes Yes Yes GNU AGPL v3.0

Neo4J Yes High High Partial Yes Yes Yes GPLv3

OrientDB Yes High High Yes Yes Yes Yes Apache2.0

• RESTful API

• Fast performance

• Multi Master Replication

• Sharding

• Official release APIs for JAva, .Net, PHP, Python and many others

• Developed in JAVA hence can be run in any Operative System

OrientDB focuses on performance and it has been built to extremely optimize data re-

trieval operations and traverse operation. All of this, combined with the features mentioned

above, make OrientDB a good choice for university development.

53

CHAPTER 5. ENABLING TECHNOLOGIES

5.4 Web framework: Flask

Flask is a micro web framework written in Python and based Werkzeug toolkit and Jinja2

template engine [34]. Flask is called a micro framework because it does not presume or

force a developer to use a particular tool or library. It has no database abstraction layer,

form validation, or any other components where pre-existing third-party libraries provide

common functions [35]. However, Flask supports extensions that can add application fea-

tures as if they were implemented in Flask itself. Extensions exist for object-relational

mappers, form validation, upload handling, various open authentication technologies and

several common framework related tools. Examples of applications that make use of the

Flask framework are Pinterest [36], LinkedIn, as well as the community web page for Flask

itself.

5.5 Swagger

Swagger is a RESTful API framework, available in multiple programming languages and

completely open source. Using Flask as base, it allows to easily create REST APIs with

quick and flexible customization. It offers interactive documentation, client SDK generation

and discoverability [37]. It is now part of the OpenAPI specification, which is a specification

for machine-readable interface files for describing, producing, consuming, and visualizing

RESTful web services [38].

The frameworks allows to create an RESTful API from a structure defined in a docu-

mentation file. It implements the different API calls, with field validation in the call and in

the response, It also offers an interactive interface to try the API and create custom calls.

This allows for easy and quick early deploy and development.

5.6 Celery

Celery is an asynchronous task queue/job queue based on distributed message passing [39].

It is focused on real-time operation, but supports scheduling as well.

The execution units, called tasks, are executed concurrently on a single or more worker

servers using multiprocessing, Eventlet, or gevent. Tasks can execute asynchronously (in

the background) or synchronously (wait until ready).

Celery is easy to integrate with web frameworks, some of which even have integration

54

5.7. REDIS

packages. It is written in Python, but the protocol can be implemented in any language.

It can also operate with other languages using webhooks. It also has multi broker support.

It supports RabbitMQ, Redis, MongoDB, etc.

5.7 Redis

Redis is an open source (BSD licensed)[40], in-memory data structure store, used as database,

cache and message broker. It supports data structures such as strings, hashes, lists, sets,

sorted sets with range queries, bitmaps, hyperloglogs and geospatial indexes with radius

queries. Redis has built-in replication, Lua scripting, LRU eviction, transactions and dif-

ferent levels of on-disk persistence, and provides high availability via Redis Sentinel and

automatic partitioning with Redis Cluster.

In order to achieve its performance, Redis works with an in-memory dataset. Depending

on your use case, you can persist it either by dumping the dataset to disk every once in a

while, or by appending each command to a log. Persistence can be optionally disabled, if

you just need a feature-rich, networked, in-memory cache.

Redis also supports trivial-to-setup master-slave asynchronous replication, with very fast

non-blocking first synchronization, auto-reconnection with partial resynchronization on net

split.

55

CHAPTER 5. ENABLING TECHNOLOGIES

56

CHAPTER6
Architecture

This chapter describes the architecture of the system. We will explain how the dif-

ferent modules are structured, their roles and how they communicate between them.

Finally, we will explain how the user can access the platform to load data or retrieve

information.

57

CHAPTER 6. ARCHITECTURE

58

6.1. OVERVIEW

6.1 Overview

Based on the requirements identified in the previous section, a preliminary set of design

criteria can be set for our influence calculating system:

1. Periodical Analysis: This criteria is set due to the requirement FR4. Social Network

are very active sites. The content is ephemeral, and relevance change in time. Also,

one of the features of our system is the temporal evolution analysis of the content

or a user. This means that our system must be constantly updating the data and

acquiring more information, in order to do constant analysis periodically.

2. Modular: The system should be modular in order to provide flexibility and further

improvements or extended functionalities. It also helps to customize the system to

the user needs.This answer the requirement FR5.

3. Topic centric: This criteria is set to fulfil requirement FR3. As said before, context is

the key to understand the influence of a user or his content. Relevance is dependent

of the context factors, such as the subject, time, scope, etc. This means that our

system must make independent analysis to the same data, one for each topic this data

is included in. Different topic analysis will offer different results for the same content.

4. Periodical Data Updates: Our system needs to be continuously connecting to Twitter

in order to extract new data or update the existing one. This will allow to answer to

the requirements FR1, FR2 and FR4.

5. Accessible by Web: Being a system based on Social Network Data Analysis, our users

will demand access by web, so a web interface and API must be provided. This allows

to fulfil requirements FR8 and NFR3.

6. Offline processing: The system should be able to process the data and deliver the

results on demand when the calculation process is time consuming or can not be done

in real time. This criteria answers to the requirement FR6, NFR2 and NFR3.

Taking into account these criteria, we have designed a modular architecture. The system

is composed of different modules or sections with differentiated functions: REST API,

Web Server, Processing Module, Scraper/Crawler, Emotion Annotation Module and the

Graph Database Each one of these modules will be detailed in the following sections. The

whole system will be connected permanently to the Internet in order to be able to extract

59

CHAPTER 6. ARCHITECTURE

information from Twitter when needed and to be accessible by the users. This access will

be done through the API of the system.

A diagram of the architecture is shown in Figure 6.1.

Figure 6.1: General Architecture

In the following sections, the different components of the system will be described.

6.2 Graph Database

All the data extracted from Twitter and the metrics calculated for the content and users

of the extractions must be stored somewhere. In our case, we will use a graph database.

The objective of this database is to provide an integrated centralized storage for the data

that allows to connect the different information with powerful relationships and traverse

capabilities.

The database integrates information relative to all the modules and different topics,

allowing us to work with all of them and our relationships at the same time, and also offers

a single access point to all the data for the API.

The structure of the data in the database is explained in section 7.3.

60

6.3. PROCESSING MODULE

6.3 Processing module

The processing module is the software module that implements the influence algorithms

and the metrics calculation. It is divided in two subsections: The Static Analysis and the

Temporal Analysis.

6.3.1 Metrics and Analysis

Internally, metrics are classified in two different types: direct and indirect metrics. Direct

metrics are directly obtainable from the extracted data, such as the number of followers

a user has. The Social Context Analysis module obtains direct metrics as soon as new

social media content is stored in the database, and these metrics are updated when new

information arrive. For instance, the Social Context module is configured to refetch general

information about users periodically, so these metrics would be updated as well.

Indirect metrics are obtained through data processing, for example User Influence. These

metrics are calculated periodically, as they have a high processing cost and require accessing

all the information in the database.

A flux diagram of the Processing module working is shown in figure 6.2.

Figure 6.2: Flux Diagram

61

CHAPTER 6. ARCHITECTURE

6.3.2 Static Analysis

This section is responsible for calculating the different indirect metrics of tweets and users

periodically and to update and store their metrics each time it receives updated data. When

the system receive new tweets, they are stored in the database. The Static Analysis section

generate a new metrics object for the new tweet with its corresponding timestamp. This

will allow the Temporal Analysis to keep track of the evolution in time of a tweet.

The Static Analysis software include the implementation of the algorithm explained in

section 3.4. The program runs through the entire database, calculating the metrics for

relevant tweets and users. After the calculation, it stores the new values in the database

and updates the old values.

6.3.3 Temporal Analysis

This section is responsible for calculating and deliver metrics that depend on time. It can

process the social media data stored in the database to evaluate the evolution in time of

some parameters of the users or the tweets, such as number of followers, number of tweet

published, number of retweets, influence, relevance, etc. This allow to get a record for the

different users and tweets and analyse their growing or their spread.

This is an important feature, because it can be useful to analyse the evolution in time

of some tweet to get information about lifespan of content in Twitter and the duration of

the interest of the users for the content. This is specially interesting for marketing studies

or special events tracking.

6.4 Web Server

The web server component is the software responsible for the implementation RESTful API

and the interface with the user. The server also offers a graphical interface to access the

RESTful API and make custom calls. This module will be responsible for making request

to the database and retrieve the answers.

Through the API, the user can introduce new social media data in the system, look for

different topics, users or tweets in the database, check their metrics and check the status of

tasks queued in the server.

62

6.5. API

6.5 API

An application programming interface (API) is a set of routine definitions, protocols, and

tools for building software and applications. An API expresses a software component in

terms of its operations, inputs, outputs, and underlying types, defining functionalities that

are independent of their respective implementations, which allows definitions and imple-

mentations to vary without compromising the interface. A REST API is an API that is

simply a specification of remote calls exposed to the API consumers.

RESTful APIs are a subset of REST interfaces that also satisfy 6 constraints:

• Client–server. By separating the user interface concerns from the data storage con-

cerns, we improve the portability of the user interface across multiple platforms and

improve scalability by simplifying the server components.

• Stateless. Each request from client to server must contain all of the information

necessary to understand the request, and cannot take advantage of any stored context

on the server. Session state is therefore kept entirely on the client.

• Cacheable. Cache constraints require that the data within a response to a request

be implicitly or explicitly labeled as cacheable or non-cacheable. If a response is

cacheable, then a client cache is given the right to reuse that response data for later,

equivalent requests.

• Uniform interface. By applying the software engineering principle of generality to the

component interface, the overall system architecture is simplified and the visibility of

interactions is improved. In order to obtain a uniform interface, multiple architec-

tural constraints are needed to guide the behaviour of components. REST is defined

by four interface constraints: identification of resources; manipulation of resources

through representations; self-descriptive messages; and, hypermedia as the engine of

application state.

• Layered system. The layered system style allows an architecture to be composed of

hierarchical layers by constraining component behavior such that each component

cannot “see” beyond the immediate layer with which they are interacting.

• Code on demand (optional). REST allows client functionality to be extended by

downloading and executing code in the form of applets or scripts. This simplifies

clients by reducing the number of features required to be pre-implemented.

63

CHAPTER 6. ARCHITECTURE

Our RESTful API grants access to the contents stored in the database: tweets, users

and metrics. It allows to load data in the database for different topics, and also, to retrieve

the information of the different analysis performed by the system. A full description of the

API methods is presented in the table 6.1.

64

6.5. API

Table 6.1: API Calls

Description API call

Topics

Obtain information of a particular topic GET /topics/{topicID}

Obtain list of available topics GET /topics

Obtain social network of a topic GET /topics/{topicID}/network

Users

Obtain list of available users GET /users

Obtain information of a particular user GET /users/{userId}

Obtain social network of a user GET /users/{userId}/network

Obtain the emotion of a user GET /users/{userId}/emotion

Obtain the sentiment of a user GET /user/{userId}/sentiment

Obtain the metrics of a user GET /user/{userId}/metrics

Tweets

Obtain list of available tweets GET /tweets

Obtain information of a particular tweet GET /tweet/{tweetId}

Obtain the history of a particular tweet GET /tweets/{tweetId}/history

Add a tweet to the database POST /tweets

Delete a tweet from the database DELETE /tweets/{tweetId}

Obtain the emotion of a tweet GET /tweets/{tweetId}/emotion

Obtain the sentiment of a tweet GET /tweets/{tweetId}/sentiment

Obtain the metrics of a tweet GET /tweets/{tweetId}/metrics

Tasks

Obtain the list of tasks GET /tasks

Obtain the status of a particular task GET /task/{taskId}
65

CHAPTER 6. ARCHITECTURE

6.6 Task manager

Each one of the operations in the system will not be processed by a single process. With

heavy processing task such as the indirect metrics calculation, the system could be blocked

for several hours, making it unaccessible and not responsive. To fix this problem, our system

uses a task manager system underneath.

This task manager will have a queue with all the processing tasks and will execute them

in FIFO order. This will allow to run time consuming tasks without blocking all the system

and retrieve the results later. It also separates the different processing modules and creates

a single processing queue independently of the number of modules. This allow to add or

remove modules without affecting the rest.

66

CHAPTER7
Implementation

This chapter describes how the different modules of the system have been implemented

and which technologies have been used.

67

CHAPTER 7. IMPLEMENTATION

68

7.1. OVERVIEW

7.1 Overview

In this section, we will describe the implementation of the most complex parts and the tech-

nologies used. The whole system is implemented in Python using Model-View-Controller

pattern with different modules covering the different parts in the pattern. We will present

the implementation description of the different modules explained in chapter 6.

7.2 Graph Database

To implement the database system, we have used OrientDB. In order to create the database

model, we use a script that runs in the OrientDB console. This script creates the different

classes that our database will contain, with all their attributes and types of relationships.

It also creates the index that will speed up the queries.

To allow our server to communicate with the database, we use the python package

pyorient, which implements an interface with OrientDB. Through this interface we can run

queries, commands and extract the information we need from the database. We will also

use the OrientDB web interface to check the data of our database, change settings and

visualize the structure and network of the data in the integrated visualizer.

7.3 Database modeling

The data model we are going to use in this project will divide the data in six different

classes:

• User: This class represents users stored in the database. Users will be the authors of

the content of the social media data, and will be related with other users.

• Tweet: This class represents the tweets stored in the database. Tweets will be de

social media data created by users, and they will be related between them.

• Topic: This class represents the different topics that users and tweets belong to.

Topics group users and tweets by their theme or origin, and allows to separate the

metrics and content from different contexts.

• User metrics: This class represents the metrics of a user stored in the database.

• Tweet metrics: This class represents the metrics of a tweet stored in the database.

69

CHAPTER 7. IMPLEMENTATION

• EmotionSet: This class represents the structure of the emotion metrics of a tweet

stored in the database. It contains the following attributes.

This classes will be interconnected by the next set of relationships and a diagram is

shown in Figure 7.1.

• Follows: This relationship links a user (follower) with the user he follows.

• Retweet: This relationship links a tweet with a retweet.

• Replied: This relationship links a tweet with a replied tweet.

• Created by: This relationship links a tweet with the user who posted it.

• Retweeted by: This relationship links a tweet with the user who retweeted it.

• Replied by: This relationship links a tweet with the user who replied to it.

• Last metrics: This relationship links a user or a tweet with its most recent set of

metrics.

• has Emotion Set: This relationship links a tweet with its most recent set of emotion

metrics.

• Belongs to topic: This relationship links a user or a tweet with the topic it belongs

to.

70

7.4. WEB SERVER AND API

Figure 7.1: DB model

7.4 Web Server and API

This section describes the implementation of the server and the API described in sections

6.4 and 6.5 and will explain the technologies used and the different advantages that brings

us.

Our Web Server and the API has been implemented using Swagger, presented in section

5.5. Swagger allows to create the API through a descriptive document in YAML format.

YAML is a human-readable data serialization language that takes concepts from program-

ming languages such as C, Perl, and Python, and ideas from XML and the data format of

electronic mail. This document allows to define the API calls, the response and call formats

and offers a really useful validation system for calls and responses. It is possible to define

the structure of the data that will be sent in API calls to validate it before it is processed by

the server. It also allows to validate the data of the response from the server, to determine

if the call was successful or not. The web form has different fields labelled according to the

call definition in the YAML file. When making the call, it will show the result in case the

call was successfully answered, or the error code in case the data could not be validated or

the call was not successfully answered.

71

CHAPTER 7. IMPLEMENTATION

Other advantage that Swagger offers is the creation of a visual interface for the API.

This interface allows to view the API structure defined in the YAML file for the calls,

visualize examples of the different calls and responses for each method (that can be defined

in the YAML file aswell) and to make custom calls to the API with a web form.

These advantages are really helpful, specially during the development phase. It allows

the developer to try different API calls really easy and fast and offers access to the error

messages instantaneously, making debugging much easier.

7.5 Docker

Docker is probably one of the easiest environments to create a virtualized instance based

on a number of flavours of operating systems. Rather that having to install an operating

system yourself, you can download one of the many guests templates or ”images” available

directly from the Docker community [41].

Docker has a scripting language which can be used to create a new instance with a

predefined list of commands and properties which will be used to create your new Docker

instance. You could, for example, use a docker file to install Apache, configure the firewall

and any further configurations we may need to make. The benefits to using a Dockerfile,

rather than making all the changes directly and saving the image are that the underlying

OS and the additions that you wish to make are completely independent [42]. You can, for

example, run a Dockerfile on any OS image.

The Scaner platform consists of several interconnected services (e.g. redis, celery, etc).

Each of these services will be deployed as a container, and connected to the rest. Each

container has its own configuration file with the script that allows to run the server in

exactly the same configuration each time. This allows the system to be easily and quickly

deployed, simplifying the development and testing.

Docker Compose simplifies the deployment of multiple interconnected containers. Com-

pose is a tool for defining and running multi-container Docker applications. With Compose,

you use a compose file to configure your application’s services [43]. Using Compose is basi-

cally a three-step process.

1. Define your app’s environment with a Dockerfile so it can be reproduced anywhere.

2. Define the services that make up your app in docker-compose.yml so they can be run

together in an isolated environment.

72

7.6. TASK MANAGER

3. Lastly, run docker-compose up and Compose will start and run your entire app.

Compose also allows to stablish the initialization order of the services and the connec-

tions between them. With this Docker Compose file, using a single command, we can create

and start all the services from our configuration.

7.6 Task Manager

The task manager is implemented using Celery, introduced in section 5.6. Celery allows to

have a several task queues, with multiple workers to allow multitasking and process queuing.

In case that a heavy process is blocking the access to the database, the web server could

answer the users communicating the state of the server.

Celery also offers a really useful feature: task status consulting and result retrieval. This

feature allows to ask celery the status of a task using the task id. This is useful when a

user of the system has asked for a time consuming task that can be dispatched immediately.

This user could see the status of the task and retrieve the result once the task has finished

processing.

This task manager and the modules of the system work independently, so it is necessary a

communication system between them. In our system, the modules and the task manager are

communicated through a messaging system using a message broker. The messaging system

is the mechanism that allows the different modules to exchange messages and initiate and

queue tasks.

It is implemented using Redis as a message broker, explained in section 5.7. Redis

offers a message queue system, with reliable communications and fast performance. The

advantages of Redis are:

• High speed due to in memory datastore.

• Can double up as both key-value datastore and job queue.

It also allows to store the messages in memory, in case they are not delivered. This

messages can be sent later until they are received, so no messages are lost in case that one

of the components is down. This means that the task already queued will not be lost even

if the task manager is down, and it will be run once the module is up and running again.

On the other side, the in memory datastore implies some drawbacks. One of them is

that, in case that the whole server is shut down, the queue is lost, due to be stored in

73

CHAPTER 7. IMPLEMENTATION

memory and not in the hard drive. The other problem is that, if our hardware has limited

memory storage, it may not have enough space to work properly with a high amount of

task.

In our case, the pros from Redis outweigh the cons. Worst case scenario, losing our task

queue in case of a total shut down is not specially problematic because most of our task are

periodical, and will be executed again when the system recovers.

One of the alternative to Redis is RabbitMQ. RabbitMQ uses hard drive storage, which

makes it more slow but more reliable. It also has a more complex precess of integration.

Because of this, we decided to use Redis.

74

CHAPTER8
Conclusions and future work

This chapter will present the conclusions obtained from this project and the lines of

future work and improvement.

75

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

76

8.1. CONCLUSIONS

8.1 Conclusions

In this section we will present the conclusions extracted from this project. We are going

to analyse if the project goals have been achieved and we will also present the different

challenges we have faced during this project and how we have overcome them.

8.1.1 Goals

Now we will analyse if the original goals of the project has been successfully achieved.

Defining and characterizing the concept of social context

The goal of defining and characterizing the concept of social context has been achieved.

We have been able to offer a definition, and we have analysed the most important

components and metrics. We have studied the effect and importance of the different

metrics and we have studied the different approaches to obtain the most complex ones.

Creation of the platform for social context analysis

Our platform has successfully been able to extract and process social media infor-

mation data from Twitter, allowing us to analyse and process different metrics from

tweets and users.

The platform includes the model of users and tweets presented in this work. It creates

the appropriate relationships between users and their related tweets, it calculates their

influences and makes this information available through a REST API.

A modular architecture enables the addition of new modules that extract more infor-

mation or use the same data for different purposes. The independent task system and

API further contribute to decouple the modules in the platform.

Thanks to the technologies that we have used for the project, we have been able

to of retrieving, storing and processing large amounts of information. OrientDB has

allowed us to store all the amount of data that we needed with no problem, the crawler

has been able to extract the necessary information from Twitter, being only limited

by the Twitter API rate limit. And finally, we have been able to process all of this

information thanks to the task manager. The task manager allows us to task time

consuming processes and retrieve the results later, so having a lot of data simply made

us wait more for the tasks but the system worked in the meantime and could accept

more task.

77

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

We have been able to create an interface to interact with the users. Using Swagger

has made the interface development really easy, as explained above. Using it, we have

created a REST API that allow user to access the information stored in the database,

the running tasks statuses and the results of finished tasks.

8.1.2 Challenges

In this section we will describe some of the challenges that we have encountered in the

development process of this project.

One of the main challenges we have faced was to determine which metrics from users

and tweets were relevant, how to obtain them and what we could be their utility. We had to

research how different companies and researchers were studying Twitter and what metrics

they were using. After that, we needed to synthesize all this information in one list. This

led to the problem of the ”influence” metrics. There is not a standard method to calculate

it, so we had to compare several algorithms until we found the one that we liked most.

Another challenge we had to face was the deployment of the system. To solve the prob-

lem we decided to use Docker. Docker has proven to be a really useful tool. Using Docker

has simplified the start up of the system during the development process and has ensured

that the software ran with the same configuration each time. Docker compose has been

specially useful, because it allowed to deploy all the services that compose SCANER with a

single command and the same configuration everytime and following a specific initialization

order.

During the development of the interface, we identified the need for an API definition that

could be used both in the server side (platform) and client side. In other words, we needed

a language agnostic interface that would allow us to use the API from different modules

and software both in server and client side. We decided to define the API using Swagger.

Swagger has greatly simplified the development process. Defining the API for the platform

was really simple once we have understood the basics of Swagger. The interface provided

makes the process of creating calls really easy and shows the errors in case that a problem

occur. The field validation system helped to ensure that our system always received correct

data and detected errors in the inputs. Besides that, the online API editor that Swagger

offers aids to develop and correct your configuration files. It also has a preview mode that

allows you to see the changes each time you process the file without deploying your system.

All of this combined made the development process much faster and agile.

The migration of the files that contained users and tweets to the OrientDB database

78

8.2. FUTURE WORK

was also a challenge. We tried to use the ETL (Extract, transform and Load) system that

OrientDB provides, but it gave us a lot of errors due to the unstructured nature of the

data. This ETL system is better suited to migrate databases from relational databases to

OrientDB. At the end, we solved using scripts to load the data until the actual platform

mechanisms for loading data were developed.

Another challenge in the coding process was to implement the aforementioned influence

calculation algorithm. It required to process all the information related to a topic at the

same time. This led us to memory shortage and we have to optimize and change the code

in order to be able to work with reduced memory without loosing too much performance.

The last challenge we faced was to process large amounts of data. Due to limited

hardware, we decided to process it offline using task management and queuing. We use

Celery to achieve this. Celery has allowed SCANER to have a task manager integrated

with the processing code. It has an easy code decoration system that allowed to create and

queue tasks in a simple and fast way. One of the most interesting features has been the

ability to queue a task that will take a long time and be able to retrieve the result later,

when the task has already finished. This allowed us to work with large amounts of data

without powerful hardware.

8.2 Future Work

In this section, we will present some of the future work lines and some ideas to continue

expanding the project. The most important of them are the following:

Develop more modules

The basic idea of the architecture is the modularity of the system. With that in mind,

we will continue developing processing modules to enhance the processing capabilities

of SCANER and add more features.

Develop authentication system

Currently, our system does not support an authentication system that allows to reg-

ister the activities of the users and limits the access to the user to certain data. With

this system our objective is to be able to separate data from different users and isolate

it from the information of the rest of the users.

Optimization

SCANER needs to process a large amount of data each time the influence metrics are

79

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

computed. This makes optimization vital, in order to reduce the load on the system

and reduce the waiting times. Optimize the current software will allow us to include

more metrics modules without increasing the waiting time for the results or upgrading

the hardware.

Distributed architecture

Continuing with the optimization, we are planning to make the architecture of the

platform a distributed architecture. This will allows us to parallelize tasks, distribute

the processing load and run the system using less powerful hardware.

Graphical interface

We are planing to develop a graphical interface for the system that will allow the

platform to show the data in the system in a user-friendly way, using charts and to

interact with the system to load or manipulate data.

80

APPENDIXA
Docker Installation and Deployment

A.1 Installation of Docker

In order to install Docker, we require a 64-bit version of our compatible Operating System.

Docker is currently supported in Linux, Windows and OS X. We will focus this section in

Linux installation, Ubuntu 14.04 in particular:

1. Update your apt-sources:

(a) Log into the machine as a user with sudo or root privileges.

(b) Open a terminal window.

(c) Update package information, ensure that APT works with the https method,

and that CA certificates are installed.

$ sudo apt-get update

$ sudo apt-get install apt-transport-https ca-certificates

(d) Add the new GPG key.

$ sudo apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80 --

recv-keys 58118E89F3A912897C070ADBF76221572C52609D

81

APPENDIX A. DOCKER INSTALLATION AND DEPLOYMENT

(e) Open the /etc/apt/sources.list.d/docker.list file in your favourite editor. If the

file doesn’t exist, create it.

(f) Remove any existing entries.

(g) Add an entry for your Ubuntu operating system.

deb https://apt.dockerproject.org/repo ubuntu-trusty main

(h) Save and close the /etc/apt/sources.list.d/docker.list file.

(i) Update the APT package index.

$ sudo apt-get update

(j) Purge the old repo if it exist.

$ sudo apt-get purge lxc-docker

(k) Verify that APT is pulling from the right repository.

$ apt-cache policy docker-engine

2. Install the linux-image-extra package:

(a) Open a terminal on your Ubuntu host.

(b) Update your package manager.

$ sudo apt-get update

(c) Install the recommended package.

$ sudo apt-get install linux-image-extra-$(uname -r)

3. Install Docker:

(a) Log into your Ubuntu installation as a user with sudo privileges.

(b) Update your APT package index.

$ sudo apt-get update

(c) Install Docker.

$ sudo apt-get install docker-engine

(d) Start the docker daemon.

$ sudo service docker start

(e) Verify docker is installed correctly.

82

A.2. DEPLOYING SCANER

$ sudo docker run hello-world

4. Install Docker Compose.

(a) Install python-pip (if not already installed).

$ sudo apt-get -y install python-pip

(b) Install Docker Compose using pip.

$ sudo pip install docker-compose

5. OPTIONAL: Create a Docker group.

(a) Log into Ubuntu as a user with sudo privileges.

(b) Create the docker group.

$ sudo groupadd docker

(c) Add your user to docker group.

$ sudo usermod -aG docker ubuntu

(d) Log out and log back in.

(e) Verify your work by running docker without sudo.

$ docker run hello-world

A.2 Deploying SCANER

Once Docker has been installed in the computer, the system is ready to launch SCANER.

1. Open a terminal on your host.

2. Navigate to the directory where SCANER is located.

3. Build the Docker Compose file in the directory.

$ docker-compose build

4. Start the system.

$ docker-compose up

83

APPENDIX A. DOCKER INSTALLATION AND DEPLOYMENT

84

Bibliography

[1] S. Moturu, Quantifying the trustworthiness of user-generated social media content. Arizona

State University, 2009.

[2] X. Hu and H. Liu, “Text analytics in social media,” in Mining text data, pp. 385–414, Springer,

2012.

[3] E. Otte and R. Rousseau, “Social network analysis: a powerful strategy, also for the information

sciences,” Journal of information Science, vol. 28, no. 6, pp. 441–453, 2002.

[4] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,” Journal of the ACM

(JACM), vol. 46, no. 5, pp. 604–632, 1999.

[5] D. Knoke and S. Yang, Social network analysis, vol. 154. Sage, 2008.

[6] J. Golbeck, Analyzing the social web. Newnes, 2013.

[7] N. M. Tichy, M. L. Tushman, and C. Fombrun, “Social network analysis for organizations,”

Academy of management review, vol. 4, no. 4, pp. 507–519, 1979.

[8] P. Goyal and S. Diwakar, “Data mining and analysis on twitter,” tech. rep., 2012.

[9] H.-W. Shen and X.-Q. Cheng, “Spectral methods for the detection of network community

structure: a comparative analysis,” Journal of Statistical Mechanics: Theory and Experiment,

vol. 2010, no. 10, p. P10020, 2010.

[10] A. Clauset, M. E. Newman, and C. Moore, “Finding community structure in very large net-

works,” Physical review E, vol. 70, no. 6, p. 066111, 2004.

[11] X. Xu, N. Yuruk, Z. Feng, and T. A. Schweiger, “Scan: a structural clustering algorithm for

networks,” in Proceedings of the 13th ACM SIGKDD international conference on Knowledge

discovery and data mining, pp. 824–833, ACM, 2007.

[12] B. A. Huberman, D. M. Romero, and F. Wu, “Social networks that matter: Twitter under the

microscope,” Available at SSRN 1313405, 2008.

[13] B. Whalley, “7 crucial social media metrics and what they mean,” aug 2011.

[14] P. Bray, “Social authority: Our measure of twitter influence,” 2013.

[15] SoMaMFyC, “Follower wonk.”

[16] I. Klout, “Klout.”

85

BIBLIOGRAPHY

[17] T. Noro, F. Ru, F. Xiao, and T. Tokuda, “Twitter user rank using keyword search,” Information

Modelling and Knowledge Bases XXIV. Frontiers in Artificial Intelligence and Applications,

vol. 251, pp. 31–48, 2013.

[18] T. Noro and T. Tokuda, “Effectiveness of incorporating follow relation into searching for twitter

users to follow,” in Web Engineering, pp. 420–429, Springer, 2014.

[19] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking: bringing

order to the web.,” 1999.

[20] “Python & java: A side-by-side comparison,” may 2009.

[21] M. L. S. C. NYC, “Python programming language advantages & disadvantages - mike levin seo

consultant nyc,” aug 2011.

[22] “What is docker?,” oct 2015.

[23] Dataconomy, “Sql vs. nosql- what you need to know - dataconomy,” oct 2015.

[24] TechRepublic, “Relational databases: Defining relationships between database tables - techre-

public,” nov 2015.

[25] DB-Engines, “Relational dbms,” may 2016.

[26] S. K. Gajendran, “A survey on nosql databases,” University of Illinois, 2012.

[27] H. Vera, M. H. Wagner Boaventura, V. Guimaraes, and F. Hondo, “Data modeling for nosql

document-oriented databases,”

[28] DB-Engines, “Document oriented database,” may 2016.

[29] R. Angles and C. Gutierrez, “Survey of graph database models,” ACM Computing Surveys

(CSUR), vol. 40, no. 1, p. 1, 2008.

[30] Neo4j, “What is a graph database? a property graph model intro,” oct 2015.

[31] DB-Engines, “Graph-oriented databases,” may 2016.

[32] DB-engine, “Db-engines ranking,” may 2016.

[33] M. K. Ahsan Bilal, “Graph databases and orientdb,” Erasmus Mundus Master’s Programme in

Information Technologies for Business Intelligence, 2015.

[34] A. Ronacher, “Opening the flask: How an aprils fools’ joke become a framework with good

intentions,” Pycon, 2011.

[35] A. Ronacher, “Welcome to flask — flask documentation (0.10),” jan 2016.

[36] S. Cohen, “What challenges has pinterest encountered with flask?,” mar 2016.

[37] “Swagger – the world’s most popular framework for apis,” jan 2016.

[38] O. A. group, “Open api initiative,” jan 2016.

[39] A. Solem, “Celery: Distributed task queue,” dec 2015.

86

BIBLIOGRAPHY

[40] RedisLabs, “Introduction to redis,” dec 2015.

[41] J. Coyle, “Create your first docker container,” nov 2015.

[42] J. Coyle, “Using dockerfiles to build new docker images,” nov 2015.

[43] Docker, “Overview of docker compose,” nov 2015.

87

BIBLIOGRAPHY

88

	Resumen
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Goals
	Structure

	Social Network Analysis
	Introduction
	Social Media Data
	Social Network Analysis
	Basics of Network Structure
	Network Structures
	Links, paths and connectedness

	Social Network Concepts
	Transactional content
	Nature of the links
	Structural characteristics

	Twitter

	Characterizing Social Context
	Overview
	User
	Profile
	Behaviour
	Network

	Content: Tweets
	Attributes
	Propagation
	Network

	User and Tweet Influence
	Social Authority
	Follower Wonk
	Klout Score
	PeerIndex
	Twitter Rank Algorithm
	User relevance

	Tweet relevance

	Requirements Analysis
	Overview
	Use Cases
	UC1: Brand Monitoring
	UC2: Emotion Analysis
	UC3: Targeting
	UC4: Task Monitoring
	UC5: Spread of Content

	Database requirements
	Summary of requirements
	Functional requirements
	Non-functional requirements

	Enabling Technologies
	Python
	Docker
	Database
	Relational Databases
	Document-oriented databases
	Graph-oriented databases
	Hybrid databases
	Comparison

	Web framework: Flask
	Swagger
	Celery
	Redis

	Architecture
	Overview
	Graph Database
	Processing module
	Metrics and Analysis
	Static Analysis
	Temporal Analysis

	Web Server
	API
	Task manager

	Implementation
	Overview
	Graph Database
	Database modeling
	Web Server and API
	Docker
	Task Manager

	Conclusions and future work
	Conclusions
	Goals
	Challenges

	Future Work

	Docker Installation and Deployment
	Installation of Docker
	Deploying SCANER

	Bibliography

